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In this report, which was inspired by a recent New York Times article, “The Great A.I. Awakening” [1], we 
investigate contemporary methods in neural machine translation (MT). The NYT article details the recent para-
digm shift in machine translation from phrase-based statistical systems to recurrent neural nets, as best exempli-
fied the remarkable success of the Google Neural Machine Translation (GNMT) model, which now powers many 
language pairs of Google Translate [2]. Here, we expand on that paradigm shift by first examining the theory and 
historical performance of statistical machine translation (SMT) in Section 1. Then in Section 2, we look at some 
specific features of neural machine translation that have recently enabled neural nets to outperform other models. 
While we draw upon a large body of literature to provide the relevant technical details and historical notes, our 
focus remains on the GNMT model due to its unparalleled performance and prominence on the web. In Section 
3, we provide specific information about results and implementation of the GNMT model. 
 

1 Background Information and Historical Notes on Machine Translation 
Given a textual sentence in a human language (the source language), the task of machine translation is to translate 
that sentence into a suitable representation in another language (the target language). Typically an MT model is 
trained using some algorithm and a set of texts that have already been translated by humans into one or more 
languages. Until as recently as 2016, phrase-based SMT was the primary model upon which machine translation 
operated. Despite its popularity, SMT suffered from limitations that caused its performance to reach a plateau. In 
this section, we first present a common metric for evaluating the output of MT models that we will refer to later 
in the report. Then we look at the theory and historical performance of phrase-based SMT models, and introduce 
the use of deep neural networks for MT. 
 

1.1 Metrics for Evaluating Performance of Machine Translation 
A common algorithm for evaluating translation performance is BLEU, a method first developed in 2002 [3]. It 
scores machine translations on a scale from 0 (no match) to 1 (perfect match) against human-translated references. 
Acting on an entire body of work, sentence by sentence, BLEU counts the number of words in the machine 
translated sentence that match words in the human translated reference. That number is then divided by the num-
ber of words in the machine translated sentence. Once all of the sentences in the work have been accounted for, 
and their scores averaged between them, a brevity penalty between 0 and 1 is multiplied by the result. The penalty 
is 1 when the word count of the texts match, and decreases as the machine translation’s length increases [3]. 
The BLEU algorithm scores correlate well with human evaluation of the same translated texts, and is used along-
side side-by-side (SxS) evaluations in Google’s own evaluation of translations. An SxS evaluation scores the 
translation from 0 to 6, where 0 is nonsense, with no information retained, and 6 is perfect retention of meaning 
and all grammar is correct [4]. 
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1.2 Phrase-Based Statistical Machine Translation 
Methods and Theory of SMT 
The modus operandi of early machine translation efforts was rule-based systems, which required manual specifi-
cation of grammar and vocabulary, and often produced poor results [5]. In the early 1990s, however, IBM devel-
oped a statistical approach to translation in which large bodies of human-translated text, referred to as parallel 
corpora, were used to automatically determine how individual words are translated [5]. Phrase-based systems 
later built upon this approach by segmenting parallel corpora into larger linguistic units: phrases (or more 
properly, phrasemes) [6]. All possible translations of each source phrase were then tabulated in a phrase table, 
which was then used to decode a new phrase from the source to target language. Here we’ll consider the specific 
task of translating from a foreign language to English, since phrase-based SMT typically operated with English 
paired with another language1. 
Before populating a phrase table for a given language pair, word alignments must be created from a suitable 
parallel corpus, such as proceedings from the United Nations. For a given sentence pair, this word alignment 
maps each word in English to the most likely corresponding word or words in the foreign language [7]. A publicly 
available algorithm such as Giza++ [7] [8] can be used to compute the word alignments, and these alignments are 
tabulated to create the phrase table. 

The decoding of a foreign sentence into English is performed by maximizing the probability of translating the 
foreign sentence F into the English sentence E: argmax&𝑃 𝐸	 	𝐹) [7]. The noisy channel model, a widely used 
formulation in statistical machine translation, decomposes this formula into a language model and a translation 
model [7]: 

𝐸∗ = argmax&	𝑃 𝐸	 	𝐹) = argmax&	𝑃./ 𝐹	 	𝐸)	𝑃0/(𝐸) (1) 

Here, 𝑃./ 𝐹	 	𝐸), or the probability of the English sentence E given a foreign sentence F, is the translation model. 
𝑃0/(𝐸), or the probability of the English sentence, is the language model, which can be derived from a monolin-
gual corpus. 

In practice, the foreign sentence to be decoded is segmented into a sequence of phrases {𝑓4, 𝑓6, … , 𝑓8}, with a 
uniform probability distribution over all possible segmentations [7]. The corresponding phrases in English are 
{𝑒4, 𝑒6, … , 𝑒8} [7]. The translation term of the noisy channel model can then further be decomposed into 

𝑃./ 𝐹	 	𝐸) = 𝑃 𝑓;	 	𝑒;)
8

;<4

 (2) 

For each consecutive phrase, this probability can be estimated as the relative frequency of collected phrase pairs 
tabulated in the phrase table [7]: 

𝑃 𝑓;	 	𝑒;) =
count(𝑓;, 𝑒;)
count(𝑓, 𝑒;)B

 (3) 

Depending on the specific formulation, additional terms may be appended to 𝑃./ to calibrate output length or 
enforce re-ordering of the English phrases [7]. An entirely separate algorithm may be used to permute the trans-
lated phrases into their final order [6]. Instead of Equation 1, a log-linear model is sometimes used to introduce 
other sources of information into the model [5]: 

                                                
1 For instance, for a language translation task between two non-English languages, LS Þ LT, Google Translate’s 
phrase-based SMT model would first translate the source language into English, and then from English into the 
target language: LS Þ En Þ LT. 
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𝐸∗ = 𝑎𝑟𝑔𝑚𝑎𝑥& 𝑔; 𝐸, 𝐹 	𝜆;
;

 (4) 

Here, each 𝑔(∙) could be 𝑃 𝐹	 	𝐸), 𝑃 𝐹	 	𝐸), 𝑃(𝐸), or some other function, and each λ is a weight indicating the 
contribution of each 𝑔(∙)  to the total function. 
Since the search space for the sentence that maximizes the probability function is so large, a beam search is 
typically employed for decoding [7]. 

 
Historical Performance and Challenges of SMT 
In the early days of MT speculation, several unsuccessful (yet well-funded) longitudinal studies occurred, notably 
collaborations of IBM with Washington University and IBM with Georgetown University. 
In 1966 the Automatic Language Processing Advisory Committee infamously published a paper, “The ALPAC 
Report” [9], that compelled funding providers to cease investment in MT research. In this report, the authors 
argued that machine translation was not possible with then available technology. It outlines 8 years of work at 
Georgetown University which failed to produce useful results. 
The authors provided a quantitative breakdown of speed, quality and cost to determine that running machine 
translation algorithms at the time of publication was significantly more costly than hiring human translators for 
the same task. As a result of this publication, the study of MT largely halted globally for nearly two decades.  
In the 1980s, MT saw a resurgence of research in Japan, motivated by the emergence of parallel computation in 
5th generation computers [10]. Most of these systems used brutish statistical algorithms which relied on large 
training sets and did not account for syntactic and semantic rules.  

Among the most significant hurdles within pure SMT is improper control of contextually determined associations 
between words in sequence, known as long-term dependency. For example, the amount that noun A should influ-
ence the translation of action B depends on whether A is an alias of another noun, whether it appears before B, 
whether A is the subject or object of B, etc. How much should be remembered and forgotten as one iterates through 
the sentence? Early attempts to hardcode understanding of linguistic concepts of anaphora and cataphora known 
as “Rule Based Machine Translators” [11]. Their performance varied, but few surpassed statistical machine trans-
lators.  
[12] provides a quantitative overview of the performance of various cannonical MT attempts. A comparison of 
the translation quality of SMT and that of NMT is presented in Section 3 of this report. 
 

1.3 Brief Overview of Neural Nets 
Neural networks can take one of two major forms: feedforward or recurrent. This section will describe these 
networks and mention a specific type of network for each form. 

  
Figure 1: An “unrolled” recurrent neural network. Image from [23]. 
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Feedforward Neural Nets 
In feedforward neural networks, information flows from input units to output units. Specifically, information 
flows through hidden layers. It has been proven both theoretically and empirically that these networks are able to 
approximate nonlinear target concepts/functions [13]. 
In a deep learning setting, an extension to the traditional multi-layer, feedforward network is the convolutional 
neural network (CNN). Unlike, the traditional approach, where the network is fully connected, CNNs use local 
filters (i.e. weights) and local connections. Thus, eliminating the need for layers to be completely connected. As 
a result, we get translation-invariant and distortion-invariant local features [14]. CNNs have become useful in 
applications that process array data. CNNs are used to process time series, acoustic, text, image, audio spectro-
gram, video, and volumetric data [14]. 

Recurrent Neural Nets 
Recurrent neural networks (RNNs) contain loops/cycles that allow information to be passed to subsequent steps 
in the network [13]. In turn, RNNs can be characterized by having a chain-like structure, where each “chain” is a 
copy of the network (Figure 1). The driving force behind this representation of a neural network is rooted in 
biological neural networks, with the goal of connecting previous knowledge to the present. However, it has been 
shown empirically and theoretically that traditional RNNs perform poorly with long-term dependencies due to 
the problem of “vanishing gradient descent” [15]. 
[16] proposed a type of RNN called the Long Short-Term Memory (LSTM) network that handles long-term de-
pendencies. The LSTM’s architecture varies from other RNN architectures in that it contains memory cells and 
gate units that control the flow of information from previous states and inputs. Specifically, a memory cell consists 
of an input and output gate unit. These gates manage the read and write access to the cell. In turn, a unit in the 
hidden layer of an LSTM network is referred to as a memory block. This memory block may contain one or more 
memory cells [17]. The use of LSTM networks in machine translation has become a recent center of attention due 
to their ability to learn long-term dependencies, which previously prevented RNNs from being used in MT efforts. 
Most notably, Google’s Neural Machine Translation system is built with a deep LSTM network [4]. 
 

 
Figure 2: Example model architecture of an encoder-decoder NMT network with LSTM neural nets and an attention mod-
ule. This image is of the GNMT implementation [4]. Each green, pink, or orange box is a separate LSTM module. 
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2 Architecture and Theory of Neural Machine Translation 
2.1 Overview of Model Architecture 
Modern neural machine translation architectures typically feature a long short-term memory (LSTM) network 
with connected encoder and decoder modules. A high-level view of a neural machine translation model with this 
architecture is shown in Figure 2. Also shown are several additional features employed by the Google Neural 
Machine Translation model, including an attention module that dynamically focuses the decoder module on dif-
ferent parts of the input sequence, residual connections between stacked layers, and bi-directional encoding of the 
first layer [4]. An overview of the encoder-decoder approach is presented here, and additional architectural con-
siderations are explained in the subsequent sections. 

The encoder module takes as input a sequence of words {𝑥4, 𝑥6, … , 𝑥/}, typically consisting of a sentence in the 
source language and ending with a special “end of sentence” symbol [18]. Before each word is introduced to the 
first layer, it is converted into a fixed-length vector via a word embedding (WE) matrix, which can be pre-gener-
ated from the training material using an algorithm such as word2vec [19]. Each row of this matrix is a low-
dimensional representation of a word in the training corpus known as a word embedding [20]. The use of word 
embeddings, as opposed to an integer index for each word in the training vocabulary, has the benefit of encapsu-
lating semantic relations between words that are orthographically unrelated [20]. An oft-cited example of this is 
the observation that 

WE(king) - WE(man) + WE(woman) ≈ WE(queen) (5) 

Using the entire sequence in the source language represented as word embeddings, the encoder module of the 
LSTM network creates a list of fixed-size vectors 𝐂 = [𝐱𝟏, 𝐱𝟐, … , 𝐱𝐌] as its output. This entire list then serves as 
the context for the decoder module. For a source language input sequence X, the task of the entire encoder-decoder 
complex is to maximize the probability of the target language sequence Y given X, i.e. argmax	𝑃 𝑌	 	𝑋). That 
probability can be rewritten using Bayes’ rule: 

𝑃 𝑌	 	𝑋) = 	 𝑃 𝑦;	 𝑦T, 𝑦4, … , 𝑦;U4; 𝑥4, 𝑥6, … , 𝑥/)
8

;<4

 (6) 

The target language sentence can therefore be decoded, word by word, by maximizing the probability of each 
word given the context C of the entire sequence (generated by the encoder) and the previously generated words: 

𝑃 𝑦;	 𝑦T, 𝑦4, … , 𝑦;U4; 𝐱𝟏, 𝐱𝟐, … , 𝐱𝐌) = 	𝑃(𝑦;	|	𝑦T, 𝑦4, … , 𝑦;U4; 𝐂) (7) 

In practice, the decoder consists of an RNN with a softmax output layer [18] [4]. Each time step, therefore, gen-
erates a probability distribution over the entire target language word embedding matrix. The target language se-
quence Y with maximum probability is typically found using a beam search algorithm [18], which keeps several 
partial solutions as candidates for the final solution. 
[21] pioneered the specific LSTM architecture used to generate generic sequences with RNNs, and [22] marked 
the first published attempt to use it with machine translation. [23] could be consulted for a general overview of 
LSTM architecture, and [21] for the specific layout and equations used in sequence generation. The entire model 
can be trained with back-propagation through time using stochastic gradient descent [21] [22]. 
 

2.2 Attention Module 
One early limitation in the design of NMT systems was the need for the decoder module to make its predictions 
using a fixed-length vector produced by the encoder [22]. For long input sequences, this could result in infor-
mation loss, but in general it meant that too much information may be passed to the decoder at once. In 2016, [18] 
overcame this limitation through the use of an attention module that, for each new output word 𝑦X, compresses 
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the variable-length context matrix C created by the encoder into a fixed-length vector 𝐜𝐭 to pass on to the decoder. 
Although C does not change as each new output word is generated, the attention module creates a new context 
vector 𝐜𝐭 with each new word, thereby “focusing” the attention of the decoder on a different part of the input. The 
method from [18] is summarized below; Google chose a similar implementation for GNMT [4]. 
The attention module is modeled as a feed-forward neural net whose input is: (1) the list of fixed-size vectors 
[𝐱𝟏, 𝐱𝟐, … , 𝐱𝐌] encoded from the input sequence, and (2) the previous hidden state 𝐬𝒊-𝟏 of the decoder. The module 
consists of a single, multi-layer perceptron such that 

𝑒;^ = 𝐯𝐚𝐓	tanh	(𝐖𝐚𝐬𝒊-𝟏 + 𝐔𝐚𝐱𝒋) (8) 

where 𝐯𝐚𝐓, 𝐖𝐚, and 𝐔𝐚 are weight matrices. For a given time step i, the weight for the jth encoded vector in 
[𝐱𝟏, 𝐱𝟐, … , 𝐱𝐌] is computed as 

𝛼;^ =
exp	(𝑒;^)
exp	(𝑒;j)/

j<4
 (9) 

The interpretation of this is that each 𝛼;^ is the probability that the word in the target language yi is aligned to a 
source word xj. The final context vector ci that is passed on to the decoder is computed as a weighted sum of the 
encoded context vectors from the input: 

𝐜𝒊 = 𝛼;^𝐱𝒋

/

^<4

 (10) 

 

2.3 Residual Connections 
Having deep, multi-layered LSTMs for encoder and decoder RNNs in NMT is associated with improve accuracy 
[4]. However, when stacking layers of LSTM networks, the vanishing gradient effect causes training of the net-
works to become a challenge [24]. This problem is mitigated by the introduction of residual connections, which 
add the memory state of the i-1th LSTM to the input of the i+1th LSTM (see Figure 2). This was demonstrated to 
allow and improve the training of deep RNNs by improving gradient flow [25]. 
 

2.4 Bidirectional Encoding 
The bidirectional RNN (BRNN) was first proposed in 1997 [26] and has recently been used in speech recognition 
algorithms [21]. In a standard, unidirectional RNN, each consecutive time frame only contains information from 
the previous and current inputs. This can be a severe limitation for natural language processing, since inputs 
downstream of the current input may provide important context for the meaning of the input at hand. For example, 
in the phrase, “although it was brand new, the car broke down”, the identity of the word it is not known until the 
car. This might not matter much in English, but in other languages, the form of the word it might depend on the 
grammatical gender or number of the car. 

A BRNN overcomes this limitation by simultaneously processing sequences in forward and reverse. The forward 
RNN reads the input sequence {𝑥4, 𝑥6, … , 𝑥/} and creates a series of forward hidden states 𝐡 = [𝐡𝟏, 𝐡𝟐, … , 𝐡𝐌]. 
The backward RNN reads the reverse sequence {𝑥/, 𝑥/U4, … , 𝑥4} and creates a series of backward hidden states 
𝐡′ = [𝐡′𝟏, 𝐡′𝟐, … , 𝐡′𝐌]. When passing this information on to the next layer, the two hidden states are concate-
nated: [𝐡𝐓; 𝐡m𝐓]. Since the input sequence is always specified in its entirety in both training and testing of machine 
translation models, the implementation of a BRNN is straightforward, and the computations of each direction can 
be performed in parallel. 

The use of the BRNN for neural machine translation was first proposed by Bahdanau, Cho, and Bengio in May 
2016 [18], and was subsequently implemented in Google’s neural machine translation model [4]. In [18], the 
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encoder and decoder each consist of two hidden layers (one forward and one backward), which was straightfor-
ward to implement using parallel computations. However, the team at Google desired to implement up to 8 hidden 
layers, and furthermore desired to use different GPUs in parallel for each layer by depth partitioning the hidden 
layers [4]. Since the forward and backward paths of each layer must both process the entire input sequence before 
being concatenated and passed to the next layer, multiple bidirectional layers are not conducive to parallel pro-
cessing. To gain the contextual benefits of a BRNN without sacrificing a parallel model, [4] chose to use a BRNN 
as the first layer and use unidirectional RNNs for the remaining layers. Google’s implementation of the bi-direc-
tional first layer is seen in the lower left of Figure 2. 

 

2.5 Parallelism for Efficient Computations 
In response to great strides in highly-parallel, commercial graphics hardware, many publications were released in 
an attempt to utilize parallelization and distribution in machine learning [27]. 

Parallelism is inherently difficult to employ on multiple modules of a single input stream simultaneously [27] 
[28].  RNN modules depend on output from previous copies, and must be completed in a sequential order. Thread 
pooling is an effective (albeit obvious) tool for parallelizing independent computations of individual perceptrons 
within a layered neural net, but fails to significantly improve computational speed in narrow, deep nets. DistBelief, 
developed in 2012, used parallelization to divide wide and deep nets across machines, spatially segmenting groups 
of perceptrons. This method paved the way for many other attempts at what has come to be known as model 
parallelism, which has generally considered to be a less useful approach than data parallelism (described below), 
as training instances must be processed concurrently, and propagating synaptic data between layers often causes 
heavy network overhead.  

While other groups began the foray into single machine parallelization of neural nets, [27] produced the canonical 
probe into distributed parallelization for neural nets. Two famous models were proposed here: Downpour SGD 
and Sandblaster L-BFGS. The former used sharded data to distribute the training load across model replicas, 
updating a parameter server with the resultant change and the models with the new parameters upon absorption 
of each training instance. Sandblaster L-BFGS used a “coordinator” module to systematically update active mod-
els using central storage of their desiccated parameters during training.  Both models were observed to increase 
speed substantially on narrow, deep networks, but the SGD model (especially when coupled with Adagrad adap-
tive learning) was observed to gain accuracy especially quickly. This model established conventions which per-
meate the recent history of parallelization attempts on RNNs.  
Grid structure [29] demonstrates a distributed system of RNNs over a “globus model” grid. This grid allows 
applications (RNNs in this instance) to execute on computational nodes overseen by middleware using a broker 
architectural pattern. These varied RNNs act as “specialists” which communicate with one another in order to 
collaboratively annotate complex input.  
The authors outline four kinds of application level collaboration:  

1. Simple division of labor: Predictive task is compartmentalized and nodes collaborate on the construction of a 
large annotated resource 

2. Supervisor: Overseeing node(s) vet the funneled work of subordinate annotators, optionally adding further 
encoding. 

3. Peers with different theoretical models learn/predict in parallel in order to contrast the differences between 
the models and the extent to which the response of one may be derived from the other.  

4. Humans may interact with a program in parallel to predictive annotators, humans may critique a series of 
structural hypotheses in real time in order to augment the training process. 

Parallelism is inherently difficult to employ on multiple modules of a single input stream simultaneously [30] 
[27] [31]. RNN modules depend on output from previous copies, and must be completed in a sequential order. 
Thread pooling is an effective (albeit obvious) tool for parallelizing independent computations of individual per-
ceptrons within a layered neural net, but fails to significantly improve computational speed in narrow, deep nets. 
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DistBelief, developed in 2012, used parallelization to divide wide and deep nets across machines, spatially seg-
menting groups of perceptrons.  

A consistent challenge in parallelization has been memory limitations of GPUs [27]. Many solutions have been 
proposed, including asynchronous gradient calculations on network distributed GPU farms and architectural ac-
commodations to make NN modules preconditioned for parallelization [27]. CNNs superficially mitigate memory 
limitations by growing synaptic size linearly with input, but have a limited ability to dynamically express LSTM 
and generally produce lower performance. Advances in GPU technology and development of specialized hard-
ware may resolve the issue entirely within the next couple of decades. 

Though not unique to RNNs, training can be performed in parallel by issuing working copies of from some iter-
atively changing source of truth [32]. Some master algorithm is responsible for dispatching input instances to 
slave models (possibly on different machines), updating the master model based on averaged results, then propa-
gating averaged updates to slaves. This may be performed on individual instances, or with shuffled mini-batches 
of some predefined size, the latter being especially useful to efficiently enqueue work on a network distributed 
system. 

Unsurprisingly, the mini-batch technique is greatly aided by a “warm start” strategy in order to encourage con-
vergence. The RNN model is trained using the entire training data for one epoch, then subsets of the training set 
are delegated to slave clones to be batch processed. Overlapping data between these slices was found to aid per-
formance for the same reason.  

On a related note, parallelism can be especially performant when applied to a hierarchical classification model 
(especially relevant for RNNs). Output is divided into superclasses and classes of a prespecified number. Thus, 
rather than considering the entire span of possible classifications, a high-level categorization may influence con-
siderations of downstream modules. Obviously, using this technique (if applicable to the model) can lend itself 
to clean division/distribution of a RNNs run classifying different steps of the hierarchy on different machines. 
 

2.6 Segmentation Approaches 
Achieving open vocabulary with a neural machine translation model presents problems when the model is intro-
duced to out-of-vocabulary (OOV) words, i.e. words that are unknown or do not exist in the recognition vocabu-
lary. These are typically words such as locations, names, or numbers that contain crucial information to the suc-
cess of many translation and speech recognition tasks. Since most neural machine translation (NMT) models are 
closed-vocabulary (i.e. they only recognize words in a fixed finite vocabulary), such systems fail in identifying 
OOV words and in turn affect the translation accuracy. It has been shown that the performance of an NMT model 
worsens dramatically as the number of words that do not exist in the recognition vocabulary increase [18]. As a 
result, the study of NMT models that recognize and properly handle OOV words is an active area of research. 

In the matter of translation, there are two approaches that deal with OOV words: (1) copy from input to output, 
or (2) use sub-word units [4]. The following further investigates the latter approach by listing examples of meth-
ods that are used to solve the OOV words problem. 
One example of a sub-unit word approach that can handle issues arising from word-level processing is character 
segmentation, in which sentences are fed to the model as sequences of characters. With a word model, there exists 
no perfect word segmentation algorithm for any language, and it has been shown that such models must imple-
ment a suboptimal learning based segmentation algorithm [33]. A character-level translation model offers a way 
to avoid issues from many morphological variants being output as distinct entities in a vocabulary [34].  

An alternative approach is to combine a character and word model, resulting in a hybrid model that utilizes the 
strengths of both architectures. The amalgamation of the two creates a system that translates mostly at the word 
level, but uses character segmentation for rare words [34]. This type of model might be easier and faster to train 
than character-based models and will not output “unknown” tokens, a disadvantage of word models [35]. 
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The final technique in the sub-word unit approach is to implement a wordpiece model, in which sentences are 
segmented into small sequences of characters. For example,  

“The house was sold” Þ [ _The, _hou, se, _wa, s, _so, ld ] 
This method depends only on the data and learns word units in a greedy manner to maximize the likelihood on 
the language model training set [36]. This model allows for user-specified number of word units that does not 
focus on semantics [4]. Correspondingly, wordpieces do not generate OOVs and can build a 200k word piece 
inventory [36]. 
 

3 Google Neural Machine Translation (GNMT) 
Here we highlight some training parameters and performance of Google’s neural machine translation model, 
which is increasingly replacing phrase-based SMT of Google Translate [2]. Although we focus on the latest results 
achieved by Google, it is important to note that the success of GNMT depended upon recent breakthroughs in 
NMT by other researchers, notably Graves’ use of LSTM networks to analyze sequences with long-term depend-
encies [21], Sutskever’s application of LSTM networks to the problem of machine translation [22], and Bahda-
nau’s invention of the attention module [18]. 
 

3.1 Parameters and Training of GNMT 
Google trained their translation system using a combination of maximum likelihood (ML) and reward learning 
(RL) training objectives [4]. ML training focuses on maximizing the sum of log probabilities (Equation 11). 
However, ML training alone was found to be unreliable due to a lack of robustness to inaccuracies in decoded 
sentences. To remedy this problem, Google refined their model with a reward learning objective, seen in Equa-
tion 12, initially used in a speech to text application developed by [37]. This function rewarded translations with 
high BLEU scores. 

𝒪/0(𝜃) = log 𝑃q 𝑌∗ ; 	 	𝑋(;))
8

;<4

 (11) 

𝒪r0(𝜃) = 𝑃q 𝑌	 	𝑋(;))	𝑟(𝑌, 𝑌∗ ; )
s∈𝒴

8

;<4

 (12) 

 
To reduce time training, Google trained 12 parallel copies of their network, all of which shared parameters [4]. 
All trainable shared parameters were initialized to random values in the range [-0.04, +0.04].  
There were multiple stages in Google’s training procedure. The first stage trained on an ML objective until con-
vergence [4]. Each step of this training consisted of a mini-batch with 128 example sentences. For the first 60K 
steps, training was performed with Adam, a stochastic optimization algorithm that features adaptive learning rates 
with relatively small memory use [38]. The learning rate for this was 0.0002. The model was then switched to 
stochastic gradient descent with a learning rate of 0.5. 

After convergence, the model was augmented by incorporating the reward learning function in addition to the 
machine learning function [4]. The specific combination of these was found by optimizing a linear combination 
of both ML and RL objectives as seen below. 

𝒪vwxyz 𝜃 = 𝛼 ∗ 𝒪/0 𝜃 + 𝒪r0(𝜃) (13) 

The optimal value of 𝛼 for this specific model was found to be 0.25 [4]. 
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3.2 Performance of GNMT 
The word meaning test (WMT)‘14 English-to-French, WMT En→Fr (36 million sentence pairs), and English-to-
German, WMT En→De (five million), datasets [39] were the primary datasets used to train the En→Fr and 
En→De neural machine translation models, respectively. These datasets were collected from a publicly available 
corpora that is used across the board for evaluating NMT systems. Newstest2012 and newstest2013, together, 
were used as validation sets. Newstest2014 and Google’s own translation product corpora was used as the test 
sets. 
 

 
Table 1: Model results on WMT En→Fr gathered from newstest2014 dataset [4]. BLEU scores as described in Section 
1.1 are multiplied by 100 to compute “BLEU points”. This table provides a summary of Google’s results on the WMT 
En→Fr dataset (newstest2014). Note that their wordpiece model, with a shared size source and target vocabulary of 
32,000 (WPM-32K), obtained the highest average BLEU score (38.95). Applying the same type of model for the WMT 
En→De dataset, WPM-32K also received the highest average BLEU score (24.61) [4]. 
 

The scores between the WMT En→Fr and WMT En→De datasets are significantly different as a result of the 
difference in training sizes for each NMT model. Improvements on the models described above were achieved 
by using RL-refined models and model ensemble for both BLEU and human evaluation. Figure 3 provides a 
particularly succinct visualization of the gains made by GNMT as measured next to human-created translations. 
Also noteworthy is the exponential leap in NMT quality between Sutskever in 2014 [22] and GNMT in late 2016 
[4], largely due to smart architectural choices and use of hardware. 
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Figure 3: Translation quality of GNMT translations compared to phrase-based translations and human-created 
translations for six different language pairs. Figure is from [40]. As described in [40]: “Data from side-by-side 
evaluations, where human raters compare the quality of translations for a given source sentence. Scores range 
from 0 to 6, with 0 meaning ‘completely nonsense translation’, and 6 meaning ‘perfect translation.’” 
 

 

4 Conclusion 
In this report, we provided a summary of the state of machine translation before the explosive entry of neural 
machine translation, we summarized important features and architectural considerations of modern neural trans-
lation models, and we took a brief look at the training and performance of Google’s neural machine translation 
implementation. The next big step in NMT efforts might be the creation of a single model capable of translating 
between any of numerous languages, instead of separately trained models for each language pair [41]. 
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