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Abstract—There is great interest in methods to improve human
insight into trained non-linear models, such as support vector
machines (SVMs), deep neural networks, and large random
forests. Leading approaches include producing a ranking of the
most relevant features, a non-trivial task for non-linear models.
We show theoretically and empirically the benefit of a novel
version of recursive feature elimination (RFE) as often used
with SVMs; the key idea is a simple twist on the kinds of
sensitivity testing employed in computational learning theory
with membership queries (e.g., [1]). With membership queries,
one can check whether changing the value of a feature in an
example changes the label. In the real-world, we usually cannot
get answers to such queries, so our approach instead makes
these queries to a trained (imperfect) non-linear model. Because
SVMs are widely used in bioinformatics, our empirical results use
a real-world cancer genomics problem; because ground truth is
not known for this task, we discuss the potential insights provided.
We also evaluate on synthetic data where ground truth is known.

I. INTRODUCTION

There is great interest in methods to improve human insight
into trained non-linear models such as support vector machines
(SVMs), deep neural networks, and large random forests;
one existing approach is to produce a ranking of the most
relevant features, a non-trivial task for non-linear models.
Famous examples of this approach include Breiman’s method
for ranking features in a random forest by percent increase in
misclassification rate when a feature is randomly permuted
[2] and Guyon’s modified version of her recursive feature
elimination (RFE) approach tailored to non-linear models [3],
which both ranks and performs feature selection by measuring
loss in weighted sum of distances from the margin. In contrast
to Guyon’s method, computational learning theory has a long
history of sensitivity testing by “flipping” or changing the
value of a feature, rather than deleting it, and posing a
membership query to find the effect on the label of the example
(e.g., [1]). In practice we do not have an oracle for such
membership queries.

This paper presents an alternative algorithm to RFE, RFE by
Sensitivity Testing (RFEST), that employs a trained non-linear
model as an approximate oracle for such membership queries.
Hence our algorithm asks how much accuracy or area under
the receiver operating characteristic curve (AUC) is lost from
a trained model when a variable is flipped, rather than how
much is lost compared to an existing model when a variable
is deleted. We first prove a probably approximately correct

(PAC)-like result showing that under certain assumptions this
algorithm provides an accurate ranking; this result does not
rely on any particular type of non-linear model or learning al-
gorithm, but only on the condition that the algorithm achieves
some minimum gain in accuracy over random guessing, as
in weak learning. Second, we show empirically that RFEST
outperforms RFE in ranking (as a surrogate for insight) the
genetic features associated with breast cancer in a genome-
wide association study (GWAS) data set and on multiple
synthetic data sets labeled by known ground truth, a family of
arguably the most challenging non-linear target functions.

As a motivating example, genome-disease association stud-
ies (genome-wide or limited) seek genetic features associated
with disease, i.e., predictive of disease. In many cases it is
believed that such features may interact with one another
in highly nonlinear ways to influence disease; nevertheless,
for practical reasons almost all association studies use linear
models and hence can find only features that individually are
correlated with disease [4]. Consequently, key genetic features
may be missed entirely. Because linear and non-linear SVMs
have been widely used in bioinformatics applications, we will
use SVMs as our learner for these empirical studies. The
theoretical results show the algorithm can use any learner
capable of building moderately accurate non-linear models.

II. BACKGROUND

A. Feature Ranking and Feature Selection

While feature ranking and feature selection are different
problems, they are closely related and each is sometimes
accomplished by the other. Recursive feature selection can
rank by maintaining the order in which features are removed;
feature ranking, e.g. by information gain, is often followed
by removal of lower ranked features. Many feature selection
algorithms utilize linear modeling approaches such as lasso-
penalized logistic regression, linear SVMs, Naı̈ve Bayes or
other weighted-voting schemes among features. An alternative
is to implement these same approaches after filtering features
individually by information gain or by many single-variable lo-
gistic regression runs [5]. To account for interactions between
features, the standard approach is to introduce interaction
terms, but such terms typically are limited to pairs of features,
and even then they greatly increase both run-time and risk of
over-fitting.



Nonlinear SVMs have the potential to more effectively
find complex interactions among features, but insight into
the important interactions is hard to extract from the learned
model. This paper addresses that shortcoming by presenting
an alternative RFE algorithm and demonstrating that the
algorithm makes it possible to identify the features that are
relevant−that play a role in the learned nonlinear model,
even if individually they are completely uncorrelated with
the class−while removing those features that are irrelevant
or redundant.

Because we do not assume we are in an active learning
setting−we do not have access to an oracle for membership
queries that can label feature vectors with the value of any
feature altered− our key insight is to use the trained nonlinear
SVM itself as such an oracle instead. While this trained model
is not the target concept, we assume it is more accurate than
random guessing and hence provides some information about
feature relevance. In homage to earlier work on membership
queries to test the sensitivity of target concepts to individual
features, we call our RFE algorithm “RFE by Sensitivity
Testing,” or RFEST. The remainder of the paper presents the
RFEST algorithm and empirical evaluations of it, including
novel and promising insights that it provides into genetic
susceptibility to breast cancer.

B. SVMs, Correlation Immunity, and RFE

SVMs are known for both their strong performance and
flexibility based on the chosen kernel [6]. The strength of
SVMs comes from their ability to effectively learn nonlinear
separators through use of the kernel trick, a mapping to a
higher-dimensional feature space resulting in an ability to
encode nonlinear separators in the original feature space [7].

Accordingly, it is expected that SVMs can efficiently learn
correlation immune (CI) functions, which are notable nonlin-
ear Boolean functions. A function is CI if every single-feature
marginal distribution is uninformative, i.e., no feature by itself
is correlated with the function value, or class, even given the
entire truth table or example space. We say a function f is
correlation immune of order c (or c-correlation immune) if f
is statistically independent from any subset of variables with
a size of at most c. A function is correlation immune if and
only if every variable has zero gain (with respect to any gain
measure) when computed from the input data (cf. [8]).

TABLE I
A TRUTH TABLE FOR DROSOPHILA (FRUITFLY) SURVIVAL BASED ON

GENDER AND SXL GENE ACTIVITY.

GENDER FEMALE SXL ACTIVE SURVIVAL

0 0 0
0 1 1
1 0 1
1 1 0

As a result, these functions include some of the most chal-
lenging target concepts for most classification algorithms, most

noteworthy the parity functions. The most famous nonlinear
separators in machine learning are exclusive-or (XOR) and
exclusive-nor (XNOR), which are two-feature parity functions.
These particular functions arise in practice, for example in
biology (Table 1) [9]. In Table I, the interpretation of this
output is that flies that will survive are either male with an
active Sxl gene, or female with an inavtive Sxl gene. While
a nonlinear SVM can learn this function easily given only
the relevant variables (i.e. Gender Female and Sxl Active),
the SVM’s accuracy will degrade dramatically as irrelevant
variables are added, unless the training set is quite large (see
Section IV).

One would expect, for example, that SVMs, with a radial
basis function (RBF) kernel or polynomial kernel of degree
at least two, would learn these functions with ease. Unfortu-
nately, for the simplest case of XOR in the presence of even a
modest number of irrelevant features, or variables, SVMs tend
to have a difficult time learning and require a large sample
size empirically. This problem is not specific to SVMs; it is
also known that no algorithm based on statistical queries can
PAC learn parity functions of log(n) variables [10]. We seek
a method of feature selection that can remove the irrelevant
variables and restore classification performance.

A widely used approach to perform such a task is RFE,
an embedded-based backward selection strategy [11]. RFE
constructs an SVM, ranks the features according to the con-
structed SVM, removes the lowest ranked feature or features
(e.g., bottom ten percent), and repeats until a certain (user-
specified) number of features remain. The RFE algorithm
with a linear SVM simply ranks features with respect to their
given coefficients (i.e. from the learned model); this approach
assumes features have been normalized to have comparable
ranges.

Unfortunately, for a nonlinear SVM, feature coefficients
cannot be obtained; Guyon et al. [3] presented a version of
RFE for use with nonlinear SVMs. We propose an alternative
RFE algorithm, RFEST, and compare these algorithms on
synthetic data and a real-world cancer genomics problem.

C. Breast Cancer and Single-Nucleotide Polymorphisms

The development of breast cancer is influenced by many
genetic and environmental factors. We study how feature
selection performs on the variations at single base pairs of
the human genome, which are known as single-nucleotide
polymorphisms (SNPs). In cancer, both germline SNPs (the
DNA sequence with which a person is born, and which is
replicated in most of the cells in her body) and somatic muta-
tions (variants that occur in select cells during replication and
can lead to cancer) are important and are widely studied. To
date, germline SNPs have received more attention as they can
predict a person’s future risk of breast cancer [12]. Genome
Wide Association Studies (GWAS) seek to find SNPs that are
associated—correlated—with risk for developing disease.

Currently, GWAS consider SNPs independently and do not
take into account possible interactions between SNPs. The
rationale behind this is that it is infeasible, for example, to



consider all pairs of the n = 1 million SNPs that are typically
measured. The main purpose of a thorough investigation of
SNPs is to gain a better understanding of how these genetic
variants act as biological markers. Given a set of SNPs, if we
can help identify a subset of important SNPs that correlate
with a particular effect in patients, then we will be able to
investigate their interactions. In turn, this will help our decision
processes about numerous aspects of medical care such as the
following: risk of developing a certain disease, effectiveness
of various drugs, and adverse reactions to specific drugs.

III. ALGORITHMS

A. RFE Algorithm

In our experiments, we compare our RFEST algorithm to the
RFE method proposed by Guyon et al. [3]. Although variants
of RFE have been proposed [13]–[15], the original method
of Guyon et al. is still widely used in the bioinformatics
community [16]–[21]. Due to the nature of the data sets used
in their paper, Guyon et al. utilized a linear SVM with RFE.
However, they described how their method can be carried over
to handle a nonlinear SVM implementation and this is the
algorithm that we use as the baseline, which we describe next.

For SVMs, the cost function that is being minimized is the
following:

J =
1

2
αTHα−αT1 (1)

with the following constraints:

0 ≤ αk ≤ C,
∑
k

αkyk = 0

Here, α is the vector of weights on the training instances
learned by the SVM algorithm, yk is the class value for the
kth training instance xk, and C is a regularization parameter.

Matrix H is the kernel matrix for kernel function K and the
set of training instances. Specifically, for each pair of training
instances xc and xd, H = ycydK(xc, xd) [3].

To determine feature relevance, the change in cost function
proposed by Guyon is the following ranking coefficient:

DJ(j) =
1

2
αTHα− 1

2
αTH(−j)α (2)

where H(−j) represents a modified version of H that
recomputes the matrix without the jth feature. In turn, the
feature with the smallest value for DJ(j) is removed.

Algorithm 1 RFE Algorithm
Input: data di,j , where i ∈ {1, . . . ,m} , j ∈ {1, . . . , n}
repeat

Train SVM, output α
Implement DJ(j) according to (2), ∀ features j
Remove the feature(s) with the smallest DJ(j)

until k features remain (k < n)

Algorithm 1 describes the RFE algorithm for the nonlinear
case in more detail [22]. The benefit of using RFE over a
vanilla approach (e.g. train a new SVM for each candidate

feature on every iteration) allows for each iteration of the
algorithm to train only one SVM model. In other words, we
assume that the vector α is fixed and consider the change
in the kernel as a result of removing feature j. Note that for
each iteration, H(−j) must be computed for each candidate
feature j. The qualitative justification behind this cost function
is that a feature’s value to the learned model is measured by
the change in the expected value of error when removing that
candidate feature [22]. RFE iterates until k features remain,
however to have a fair comparison to RFEST, the stopping
criterion for RFE was set to be until the accuracy measurement
AUC is less than the max AUC achieved thus far. We describe
RFEST in the next section.

B. RFEST Algorithm

While our presentation of RFEST assumes that we are using
binary features with a {-1,1}-encoding, it could be extended to
handle continuous and/or categorical features as well. Standard
RFE requires recomputing the H matrix (as described in the
previous section) for each feature removed and can become
computationally intractable with many features. In the case
where there are thousands of features, Guyon et al. [3] chose
to remove half of the features at each iteration. Doing so allows
for faster convergence to an idealized subset of features, but
key information may be lost.

There are two main differences between RFE and RFEST.
The first is that RFEST flips the binary features, rather than
deleting them. Note that flipping a feature means that if its
current value is −1, then it is changed to have the value 1,
and vice versa.

The second difference is in the construction of the cost
function. An SVM classifier can classify a dataset with the
accuracy measurement AUC. In addition, for each feature j,
we create a modified version of the training set by flipping
feature j in each example, and then calculate the AUC of the
same SVM classifier on this modified training set. We call the
calculated value AUCflipped. The ranking coefficient used by
RFEST is the following:

R(j) = AUC −AUCflipped (3)

The interpretation of R(j) is as follows. For each j, if
AUCflipped < AUC, then the jth feature is relevant because
the model classified the instances at a lower AUC with j
flipped. In contrast, if AUCflipped ≥ AUC, then the jth

feature is irrelevant because the model classified the instances
with the same or higher AUC with j flipped. Therefore, the
feature corresponding to the smallest R(j) will be removed.
This process does not retrain a classifier for every candidate
feature to be removed and we no longer compute H(−j).

For our experiments, a nonlinear SVM with an RBF kernel
was used. The reason for doing so is because the RBF kernel
implicitly computes interaction terms for all subsets of input
features. It has been shown that searching in exponentially
growing sequences for the hyper-parameters, namely cost C
and gamma γ, is a good method for identifying their respective



parameter values [23]. Therefore, the best configuration for C
and γ was chosen using grid search.

To determine the final subset of features, RFEST stops when
the AUC at any given iteration is less than p% of the max
AUC achieved thus far. This parameter controls the tradeoff
between model interpretability and model efficacy. That is,
a lower choice for p encourages a small number of features,
whereas a larger choice encourages a better performing model.
For our experiments, we set p = 95% (see Section IV). Al-
ternatively, other heuristics can be implemented with RFEST.
One approach would be to stop when AUC decreases (i.e. a
hill-climbing search). Another would be to apply a simulated
annealing method, where if the AUC decreases, we continue
searching with a small probability. As the search continues,
the probability decreases. Search methods such as simulated
annealing or the approach RFEST currently uses are aimed
towards avoiding a local optimum. We use our current search
method since it avoids having to set additional parameters.

RFEST may suffer if the SVM model we use is overfitted
to a given instance, since the model might then be sensitive to
the value of every feature. For this reason, we used a ten-fold
cross validation and allocated the dataset into separate training,
tuning, and testing sets to produce an unbiased estimate of the
efficacy of our approach. The algorithm below summarizes
RFEST.

Algorithm 2 RFEST Algorithm
Input: allocated data di,j , i ∈ {1, . . . ,m} , j ∈ {1, . . . , n},
into separate train, tune, and test
repeat

Train SVM on train, test on tune and output AUC
Implement R(j) according to (3), ∀ features j
Remove the feature(s) with the smallest R(j)

until AUC is less than p% of the max AUC achieved
return SVM model built from train and tune and AUC
from test

We next demonstrate the theoretical efficacy of using the
quantity R(j) to rank features, by considering a classification
problem on n binary features, where examples are labeled
according to the parity of a subset of the features. We show
if a nonlinear machine learning algorithm can learn a suffi-
ciently accurate model M , then with high probability, using
a polynomial-size sample to compute the R(j) values with
model M will result in those values being higher for relevant
features than for irrelevant features. Thus if any irrelevant
features are present, the feature with the lowest R(j) value,
removed by RFEST, will be irrelevant.

RFEST is a generic method. Because of the interpretation
behind the ranking coefficient R(j), this allows us to use any
accuracy measurement. Therefore, for simplicity and clarity
of our analysis, we prove our theorem for a related measure,
R̃(j), which is the same as R(j) except that it is defined
in terms of accuracy rather than AUC. Although we state
the theorem here only for the parity function and uniformly
distributed examples, we prove a more general theorem in the
Supplementary Material (a link will be made available). That

theorem applies to a somewhat broader class of functions and
product distributions.

Theorem III.1. Let f be a Boolean target concept, defined on
n Boolean features, which labels examples according to the
parity of a fixed subset of the n features. Suppose a machine
learning algorithm is used to learn a classifier M for f .
Suppose further that M has true error rate ε < 1/2, with
respect to the uniform distribution. Then there is a quantity t
that is polynomial in n, ln 1

δ , and 1
(1/2)−ε , with the following

property: for all 0 < δ < 1, if the R̃(j) values for all n
features are computed using M and a new independent sample
of size t, also drawn from the uniform distribution, then with
probability at least 1 − δ, the computed R̃(j) values for all
the relevant features will be higher than the computed R̃(j)
values for the irrelevant features.

We note that Theorem III.1 does not contradict the known
result that parity functions are not PAC-learnable from statis-
tical queries because it is preconditioned on having an SVM
model with accuracy better than random guessing.

IV. EXPERIMENTAL RESULTS

A. Data

We implemented RFEST and Guyon’s RFE algorithm tai-
lored to a nonlinear SVM, and we evaluated it on two types of
data. The first consists of synthetic data that takes the form of
a parity function on two variables, which is a CI function
of order two. Correlation immune functions of order four,
five, and six were also evaluated. There are many different
CI functions, so for orders four, five, and six, ten functions
for each order were randomly chosen. For functions of order
c, the associated target concept was defined on n features. Of
those n features, c were randomly chosen and corresponded to
the c variables of the CI function, and the remaining features
were irrelevant. Therefore, the task of both feature selection
algorithms was to find the c variables that determined the class
label. Feature values for all instances were chosen from a
uniform distribution and the range of the number of instances
was 100 to 2000.

The second dataset presented in this paper indicates that
Emca4, a genetic determinant of susceptibility to 17β-estradiol
(E2)-induced mammary cancer in the rat, has been mapped to
rat chromosome 7 (RNO7) [24]–[26]. Data presented herein
indicate that Emca4 harbors multiple genetic determinants
of mammary cancer susceptibility and tumor aggressiveness
that are orthologous to breast cancer risk loci mapped to
chromosome 8q24-24 in genome wide association studies
(GWAS) [12], [27]–[31].

The proceeding algorithm(s) used 76 of the SNPs in the
designated region that are in the Hunter GWAS data set of
1145 breast cancer cases and 1142 controls [32]. All patients
that had incomplete SNP data (630 patients) were omitted from
our analysis. The data was made available via dbGaP’s Cancer
Genetic Markers of Susceptibility (CGEMS) Breast Cancer
GWAS.
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Fig. 1. From left to right are results for 20 total features. The first column represents the AUC achieved across different training examples and the second
column shows the number of features that were retained, with respect to the AUC achieved from the first column. The first row shows the results for RFE.
The second row shows the results for RFEST.

B. Synthetic Data Results

A learning curve was created to show the average AUC
for n total features, where n ∈ {20, 50, 100} (i.e. the av-
erage AUC of the ten different functions for each order,
respectively). For each n, we trained datasets that contained
m examples, where m ∈ {100, 200, 300, . . . , 2000}. In ad-
dition, a learning curve was plotted to represent the average
number of features that were kept using the same number
of features and examples as stated above (i.e. the average
number of features retained of the ten different functions for
each order, respectively). To make the comparison fair, 10%
percent of the total number of features remaining at a given
iteration were removed. In [3], the authors removed half of
the features. However, we believe removing 10% of features
at each iteration gave more accurate results since the number
of features to begin with was not as large as the number in
Guyon’s paper.

In Figure 1 we show the synthetic data results for 20 total
features across the CI functions of order two, four, five, and
six. The performance (in terms of AUC) of both algorithms
increased as the number of training examples increased, which
is to be expected. However, RFEST achieved an AUC of 1.0
at a faster rate than RFE. In fact, for orders five and six, RFE
failed to attain an AUC of 1.0.

The average number of features retained across the various
orders was also calculated (second column of Figure 1). The
goal was to output only the relevant features. For example, in
the case of the parity function, we set the relevant features
to be randomly chosen among the 20 features in our dataset,
and the remaining features were irrelevant. For the CI function
of order four, four randomly chosen features were set as the
relevant variables, and the remaining features were irrelevant.

The creation of the remaining CI functions followed a similar
format. All feature values were chosen with respect to a
uniform distribution.

Observe that in Figure 1, RFE was not able to retain the
relevant features across all orders. For orders four, five, and
six, the algorithm stopped prematurely, outputting nearly all
of the original features. In the case of the parity function,
there are several instances where the RFE algorithm outputted
only a small subset of features that included the relevant
variables, however, it failed to return solely those that are
relevant. Unlike RFE, RFEST was able to retain solely the
relevant variables for each order. For the parity function, only
200 instances were required. For orders four, five, and six,
400, 400, and 300 instances were needed to return a subset
of only the relevant features, respectively. This is a significant
difference.

Figure 2 shows the synthetic data results for 50 total features
across the CI functions of order two, four, five, and six. In a
similar format to Figure 1, the first row represents the AUC
achieved and features retained, respectively, for RFE. The
second row represents the results for RFEST. As compared to
Figure 1, there is a general decrease in AUC across all orders,
as the number of irrelevant features increases. However, after
a certain number of training examples, RFEST outperformed
RFE. The max average AUC achieved for RFE and RFEST
for all orders are represented in Table II.

In addition to the significant difference in performance
(as shown in Table II), there is a distinct difference in the
number of features returned. Across all orders and all varying
training examples, RFE was not able to find the subset of
relevant variables. However, RFEST was able to do so with
the corresponding max average AUC’s and training examples



●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

Training Examples

A
U

C

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000

Order 2
Order 4
Order 5
Order 6

● ● ●

● ●

●

● ● ●

●

● ● ● ●

●

●

● ●

●

●

Training Examples

N
um

be
r 

of
 F

ea
tu

re
s

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000

0

10

20

30

40

50

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Training Examples

A
U

C

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

● ● ● ●

● ● ●

●

●

●
● ●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ● ● ● ●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Training Examples

N
um

be
r 

of
 F

ea
tu

re
s

●
●

●

●

●

● ●

●

●

● ●

● ● ●

●

●
● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ● ● ● ●

100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000

0

10

20

30

40

50

Fig. 2. From left to right are results for 50 total features. The first column represents the AUC achieved across different training examples and the second
column shows the number of features that were retained, with respect to the AUC achieved from the first column. The first row shows the results for RFE.
The second row shows the results for RFEST.

from Table II. This observation is also shown graphically in
the second column of Figure 2.

TABLE II
MAX AVERAGE AUC RESULTS FOR 50 TOTAL FEATURES.

RFE RFEST

ORDER AUC TRAINING AUC TRAINING
EXAMPLES EXAMPLES

2 0.889 1600 1.0 400

4 0.773 1800 1.0 600

5 0.649 2000 1.0 900

6 0.710 2000 1.0 900

Lastly, Figure 3 shows the synthetic data results for 100
total features across the CI functions of order two, four, five,
and six. Similar to the results in Figures 1 and 2, RFEST
outperformed RFE in both prediction performance and the
ability to retain fewer relevant features. The max average AUC
results for RFE and RFEST can be found in Table III. For 100
total features, at approximately 900 training examples, there
is a significant difference between the prediction performance
(across CI function orders two, four, and six) for RFE and
RFEST (as shown in Table III). That is, with fewer training
examples, RFEST achieved higher max average AUCs com-
pared to RFE.

Observe that in Figure 3, as the number of training examples
increased, RFEST was able to return a smaller subset of
features, whereas, RFE returned more than half the number
of original features. Note that RFEST demonstrated more
fluctuation with 100 total features. This finding suggests that

there are CI functions in which RFEST may not be the more
robust method, in terms of its ability to return relevant features.

TABLE III
MAX AVERAGE AUC RESULTS FOR 100 TOTAL FEATURES.

RFE RFEST

ORDER AUC TRAINING AUC TRAINING
EXAMPLES EXAMPLES

2 0.557 1100 1.0 900

4 0.624 1700 1.0 1600

5 0.548 1800 0.704 1500

6 0.611 1800 1.0 1400

C. Germline Genomic Data for Breast Cancer Results

There is great interest in associating variations in the human
genome with disease risk. Much of this work focuses on
associating with any given disease the variations in SNPs.
Most such work assumes the SNPs, and the variations in
disease risk that they cause, are independent of one another; in
general this assumption is wrong and results in lost accuracy.

We may examine variations in the germline DNA with
which a person is born or variations that arise from somatic
mutations in individual cells, such as in the development
of cancers and which may vary widely even within the
same tumor. One particular disease for which both types of
variations have been studied is breast cancer. For predicting
disease risk, germline genomic data is the more natural choice
to use.
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Fig. 3. From left to right are results for 100 total features. The first column represents the AUC achieved across different training examples and the second
column shows the number of features that were retained, with respect to the AUC achieved from the first column. The first row shows the results for RFE.
The second row shows the results for RFEST.

The data we investigate contains 76 SNPs, translating to
152 binary features, in a particular region of the human
genome that is orthologous to a region of the rat genome
known to modulate breast cancer risk. We use the CGEMS
data set of SNP genotypes for 1145 breast cancer cases and
1142 healthy age- and gender-matched controls [32]. Applying
RFEST to this data, as run in the previous section, produces a
cross-validated AUC of 0.56 with only nine features, which
outperforms linear SVM and nonlinear SVM cross-validated
runs with the original input data (0.53 and 0.54, respectively).
Likewise, RFEST outperformed RFE as RFE (as run in the
previous section) returned an AUC of 0.53 with 122 features,
no better than either a linear or nonlinear SVM run. We
also implemented RFE with the stopping criterion stated in
Algorithm 1. That is, since RFEST returned nine features,
RFE also iterated until nine features remained but returned
an AUC of 0.51.

While all runs were performed by eliminating 10% of
features at a time, our novel algorithm is also effective (when
compared to RFE) when removing 20% or even 30% of the
remaining features at a time. Removing 10% of the features at
a time not only resulted in an AUC of 0.56 but most notably
retained only nine features. With such a small set of features,
one can then exhaustively generate all pairs (and even more)
of interaction terms. A linear SVM model was built with the
remaining nine features and all interaction terms. In turn, the
top 13 features were all pairs of SNPs rather than individual
SNPs. This suggests that interactions play a major role in the
effect of SNP variations in this region on breast cancer risk, as
has been suspected. Studies are under way to further evaluate
these nine selected SNPs.

It has been shown that incorporating, as risk factors,

germline SNPs associated with breast cancer can significantly
improve prediction and even mammography-based diagnosis
of breast cancer, even though breast cancer is estimated to
be only 30% heritable [33]. In this section we have shown
that avoiding the independence assumption regarding SNPs, by
using a nonlinear SVM with our novel RFE algorithm, makes
it possible to associate with breast cancer risk new SNPs and
their interactions, and that this association can enable more
accurate breast cancer risk prediction than could be made from
these SNPs without taking interactions into account.

A post-hoc analysis of these nine selected SNPs confirmed
our collaborating biologist’s suspicion that interactions (rather
than specific SNP values) were the most important modulator
of breast cancer risk in this genomic region, and revealed
which interactions were crucial to the underlying task (i.e.
breast cancer diagnoses).

V. DISCUSSION & CONCLUSION

In this paper, we explored the difficulties that accompany
feature selection and learning decidedly nonlinear target con-
cepts. In addition, we discussed the challenges that are faced
in using Guyon’s RFE algorithm [3]. Such a problem occurs
in significantly lower AUC than the novel RFE algorithm.

We introduce a new algorithm, RFEST, for a nonlinear
machine learning algorithm and demonstrate its efficacy both
theoretically (refer to Theorem III.1 and Supplementary Ma-
terial) and empirically (see Section IV). The RFE algorithm
is an embedded-based approach but RFEST behaves like a
wrapper-based approach. It uses a nonlinear SVM as a black
box to determine feature relevance. In principle, with this
approach one can use any machine learning algorithm to
remove irrelevant or redundant features.



RFEST differs from RFE in two important ways: it perturbs
rather than eliminates each feature to test sensitivity and
measures loss in model efficacy instead of the loss in weighted
sum of distances from the margin. These differences result in
substantial improvements across CI functions and a real-world
breast cancer genomics problem.

Extending the feature types used by RFEST is left for future
work. Lastly, if one knew that the input data contained many
correlated features, then applying a filter algorithm before
RFEST will aid in removing redundant features.

ACKNOWLEDGMENT

REFERENCES

[1] N. Bshouty, T. Hancock, and L. Hellerstein, “Learning boolean read-
once formulas with arbitrary symmetric and constant fan-in gates,” in
Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, ser. COLT ’92. New York, NY, USA: ACM, 1992, pp. 1–15.

[2] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[3] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine Learning,
vol. 46, no. 1, pp. 389–422, 2002.

[4] Z. Zhang, E. Ersoz, C. Lai, R. Todhunter, H. Tiwari, M. Gore, . . . , and
E. Buckler, “Mixed linear model approach adapted for genome-wide
association studies,” Nature, vol. 42, pp. 355 EP –, 2010.

[5] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Computers and Electrical Engineering, vol. 40, no. 1, pp. 16 – 28, 2014,
40th-year commemorative issue.

[6] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proceedings of the 23rd International
Conference on Machine Learning, ser. ICML ’06. New York, NY, USA:
ACM, 2006, pp. 161–168.

[7] S. Maldonado and R. Weber, Embedded Feature Selection for Support
Vector Machines: State-of-the-Art and Future Challenges. Springer
Berlin Heidelberg, 2011.

[8] B. Roy, “A brief outline of research on correlation immune functions,” in
Information Security and Privacy, L. Batten and J. Seberry, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 379–394.

[9] T. Cline, “A male-specific lethal mutation in drosophila melanogaster
that transforms sex,” Developmental Biology, vol. 72, pp. 266–275, 1979.

[10] A. Blum, M. L. Furst, J. C. Jackson, M. J. Kearns, Y. Mansour, and
S. Rudich, “Weakly learning DNF and characterizing statistical query
learning using fourier analysis,” in Proceedings of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing, 23-25 May 1994,
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